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Connection between order ideal toggles and antichain toggles

Piecewise-linear generalization to poset polytopes

Outline

Background: toggles and rowmotion on order ideals and
antichains of posets.

Focus on the antichain toggle group and construct an
explicit isomorphism with the order ideal toggle group.

Generalize to Stanley’s order polytope and chain polytope
of posets.
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The toggle group of order ideals

Let P be a poset. Let A(P ), J(P ), F (P ) denote the sets of
antichains, order ideals, and order filters of P respectively.

Definition (Cameron and Fon-Der-Flaass 1995)

Let e ∈ P . Then the order ideal toggle corresponding to e is
the map te : J(P )→ J(P ) defined by

te(I) =


I ∪ {e} if e 6∈ I and I ∪ {e} ∈ J(P ),
I \ {e} if e ∈ I and I \ {e} ∈ J(P ),
I otherwise.
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The toggle group of order ideals

te(I) =


I ∪ {e} if e 6∈ I and I ∪ {e} ∈ J(P )
I \ {e} if e ∈ I and I \ {e} ∈ J(P )
I otherwise

Example

f

d e

a b c

td7−→

f

d e

a b c

Since d is not in the original order ideal, and adding d results
in an order ideal, we add d in.
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The toggle group of order ideals

te(I) =


I ∪ {e} if e 6∈ I and I ∪ {e} ∈ J(P )
I \ {e} if e ∈ I and I \ {e} ∈ J(P )
I otherwise

Example

f

d e

a b c

tf7−→

f

d e

a b c

Now f is not in the original order ideal, but adding f does not
result in an order ideal. So tf does nothing.
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The toggle group of order ideals

te(I) =


I ∪ {e} if e 6∈ I and I ∪ {e} ∈ J(P )
I \ {e} if e ∈ I and I \ {e} ∈ J(P )
I otherwise

Example

f

d e

a b c

ta7−→

f

d e

a b c

Since a is in the order ideal, and removing a still results in an
order ideal, we remove a.
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The toggle group of order ideals

te(I) =


I ∪ {e} if e 6∈ I and I ∪ {e} ∈ J(P )
I \ {e} if e ∈ I and I \ {e} ∈ J(P )
I otherwise

Example

f

d e

a b c

tb7−→

f

d e

a b c

Since b is in the order ideal, and removing b does not result in
an order ideal, tb does nothing.
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The toggle group of order ideals

Definition

The toggle group of J(P ), denoted TogJ(P ), is the
subgroup of SJ(P ) generated by all toggles {te | e ∈ P}.

Theorem (Cameron and Fon-Der-Flaass 1995)

For a finite connected poset P , TogJ(P ) is either the
symmetric group SJ(P ) or alternating group AJ(P ) on J(P ).
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Order ideal rowmotion

One particular element of the toggle group TogJ(P ) is called
order ideal rowmotion and denoted RowJ .

Let (x1, x2, . . . , xn) be any linear extension of a finite poset P .
Then RowJ = tx1tx2 · · · txn .
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Order ideal rowmotion

One particular element of the toggle group TogJ(P ) is called
order ideal rowmotion and denoted RowJ .

Let (x1, x2, . . . , xn) be any linear extension of a finite poset P .
Then RowJ = tx1tx2 · · · txn .
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Order ideal rowmotion

One particular element of the toggle group TogJ(P ) is called
order ideal rowmotion and denoted RowJ .

Let (x1, x2, . . . , xn) be any linear extension of a finite poset P .
Then RowJ = tx1tx2 · · · txn .

Example

RowJ7−→
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Rowmotion

For some specific families of posets (e.g. root posets, zigzag
posets, products of chains), various phenomena have been
discovered for rowmotion including

the order of the map being easy to describe in general

cyclic sieving

homomesy

resonance

equivariant bijections
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Another way to describe rowmotion

There are natural bijections between A(P ), J(P ), and F (P ).

Complementation is a bijection between J(P ) and F (P ).

An antichain A generates an order ideal
I(A) := {x ∈ P | x ≤ y for some y ∈ A} whose set of
maximal elements is A.

An antichain A generates an order filter
F(A) := {x ∈ P | x ≥ y for some y ∈ A} whose set of
minimal elements is A.

Example

I7−→
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Another way to describe rowmotion

There are natural bijections between A(P ), J(P ), and F (P ).

Complementation is a bijection between J(P ) and F (P ).

An antichain A generates an order ideal
I(A) := {x ∈ P | x ≤ y for some y ∈ A} whose set of
maximal elements is A.

An antichain A generates an order filter
F(A) := {x ∈ P | x ≥ y for some y ∈ A} whose set of
minimal elements is A.

Example

F7−→
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Another way to describe rowmotion

There are natural bijections between A(P ), J(P ), and F (P ).

Complementation is a bijection between J(P ) and F (P ).

An antichain A generates an order ideal
I(A) := {x ∈ P | x ≤ y for some y ∈ A} whose set of
maximal elements is A.

An antichain A generates an order filter
F(A) := {x ∈ P | x ≥ y for some y ∈ A} whose set of
minimal elements is A.

Example

F−17−→
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Another way to describe rowmotion

RowJ : J(P )
comp−→ F (P )

F−1

−→ A(P ) I−→ J(P )

complement

take minimal elements

generate order ideal

Example (RowJ)

comp7−→ F−1

7−→ I7−→
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Antichain rowmotion

RowA : A(P ) I−→ J(P )
comp−→ F (P )

F−1

−→ A(P )

RowJ : J(P )
comp−→ F (P )

F−1

−→ A(P ) I−→ J(P )

Example (RowA)

I7−→ comp7−→ F−1

7−→

Example (RowJ)

comp7−→ F−1

7−→ I7−→
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Antichain rowmotion

We call RowA antichain rowmotion.

Example (RowA)

I7−→ comp7−→ F−1

7−→

Example (RowJ)

comp7−→ F−1

7−→ I7−→

A(P )

J(P )

A(P )

J(P )

I

RowJ

RowA

I



Background
Connection between order ideal toggles and antichain toggles

Piecewise-linear generalization to poset polytopes

The toggle group of antichains

Striker has generalized the notion of toggles relative to any set
of “allowed” subsets, not necessarily order ideals.

Definition

Let e ∈ P . Then the antichain toggle corresponding to e is
the map τe : A(P )→ A(P ) defined by

τe(A) =


A ∪ {e} if e 6∈ A and A ∪ {e} ∈ A(P ),
A \ {e} if e ∈ A,
A otherwise.

Let TogA(P ) denote the toggle group of A(P ) generated by
the toggles {τe | e ∈ P}.
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The toggle group of antichains

τe(A) =


A ∪ {e} if e 6∈ A and A ∪ {e} ∈ A(P ),
A \ {e} if e ∈ A,
A otherwise.

Example

f

d e

a b c

τc7−→

f

d e

a b c

Adding c results in an antichain, so τc adds c in.
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The toggle group of antichains

τe(A) =


A ∪ {e} if e 6∈ A and A ∪ {e} ∈ A(P ),
A \ {e} if e ∈ A,
A otherwise.

Example

f

d e

a b c

τb7−→

f

d e

a b c

Adding b does not result in an antichain, so τb does nothing.
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The toggle group of antichains

τe(A) =


A ∪ {e} if e 6∈ A and A ∪ {e} ∈ A(P ),
A \ {e} if e ∈ A,
A otherwise.

Example

f

d e

a b c

τd7−→

f

d e

a b c

Notice that (unlike order ideals) we can always remove an
element out of an antichain and still get an antichain.
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Antichain and order ideal toggles are different

f

d e

a b c

τe7−→

f

d e

a b c

I I

f

d e

a b c

f

d e

a b c

Note that we use te to refer to the order ideal toggles, and we
use τe to refer to the antichain toggles.
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Antichain and order ideal toggles are different

f

d e

a b c

τe7−→

f

d e

a b c

I I

f

d e

a b c

f

d e

a b c

Note that we use te to refer to the order ideal toggles, and we
use τe to refer to the antichain toggles.
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The toggle groups

Theorem (Cameron and Fon-Der-Flaass 1995)

For a finite connected poset P , TogJ(P ) is either the
symmetric group SJ(P ) or alternating group AJ(P ) on J(P ).

Theorem (Striker)

For a finite connected poset P , TogA(P ) is either the
symmetric group SA(P ) or alternating group AA(P ) on A(P ).

Now we will describe an explicit isomorphism between
TogJ(P ) and TogA(P ).
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The toggle groups

Theorem (Cameron and Fon-Der-Flaass 1995)

For a finite connected poset P , TogJ(P ) is either the
symmetric group SJ(P ) or alternating group AJ(P ) on J(P ).

Theorem (Striker)

For a finite connected poset P , TogA(P ) is either the
symmetric group SA(P ) or alternating group AA(P ) on A(P ).

Now we will describe an explicit isomorphism between
TogJ(P ) and TogA(P ).
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How order ideal toggles act on antichains

Definition

For e ∈ P , let {e1, . . . , ek} be the (possibly empty) set of
elements that e covers. Define t∗e ∈ TogA(P ) as

t∗e := τe1τe2 · · · τekτeτe1τe2 · · · τek
In particular, if e is a minimal element of P , then t∗e = τe.

Theorem (J.)

The following diagram commutes.

A(P )

J(P )

A(P )

J(P )

I

te

t∗e

I
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How order ideal toggles act on antichains

t∗e = τe1τe2τe3τeτe1τe2τe3

e

e1 e2 e3
τe1τe2τe3

e

e1 e2 e3

I

e

e1 e2 e3 te

e

e1 e2 e3
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How order ideal toggles act on antichains

t∗e = τe1τe2τe3τeτe1τe2τe3

e

e1 e2 e3
τe1τe2τe3

e

e1 e2 e3
τe

e

e1 e2 e3

I

e

e1 e2 e3 te

e

e1 e2 e3
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How order ideal toggles act on antichains

t∗e = τe1τe2τe3τeτe1τe2τe3

e

e1 e2 e3
τe1τe2τe3

e

e1 e2 e3
τe

e

e1 e2 e3
τe1τe2τe3

e

e1 e2 e3

I I

e

e1 e2 e3 te

e

e1 e2 e3
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How antichain toggles act on order ideals

Definition

ηe := tx1tx2 · · · txk
where (x1, x2, . . . , xk) is a linear

extension of the subposet {x < e} of P .

If e is minimal in P , then ηe is the identity.

τ ∗e := ηeteη
−1
e

Theorem (J.)

The following diagram commutes.

A(P )

J(P )

A(P )

J(P )

I

τ ∗e

τe

I



Background
Connection between order ideal toggles and antichain toggles

Piecewise-linear generalization to poset polytopes

How antichain toggles act on order ideals

(1,1)

(2,1)

(3,1)

(1,2)

(2,2)

(3,2)

P =

η(2,2) = t(1,1)t(1,2)t(2,1)

τ ∗(2,2) = η(2,2)t(2,2)η
−1
(2,2) = t(1,1)t(1,2)t(2,1)t(2,2)t(2,1)t(1,2)t(1,1)

t(1,1) t(1,2) t(2,1) t(2,2) t(2,1) t(1,2) t(1,1)

I I
τ(2,2)
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Isomorphism between TogA(P ) and TogJ(P )

Corollary (J.)

There is an isomorphism from TogA(P ) to TogJ(P ) given by
τe 7→ τ ∗e , with inverse given by te 7→ t∗e.

Theorem (Striker, J.)

Let (x1, x2, . . . , xn) be any linear extension of a finite poset P .
Then RowA = τxn · · · τx2τx1 .

Note that antichain rowmotion is a product of antichain
toggles, just as order ideal rowmotion is a product of order
ideal toggles, but in the opposite order.
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Isomorphism between TogA(P ) and TogJ(P )

Corollary (J.)

There is an isomorphism from TogA(P ) to TogJ(P ) given by
τe 7→ τ ∗e , with inverse given by te 7→ t∗e.

Theorem (Striker, J.)

Let (x1, x2, . . . , xn) be any linear extension of a finite poset P .
Then RowA = τxn · · · τx2τx1 .

Note that antichain rowmotion is a product of antichain
toggles, just as order ideal rowmotion is a product of order
ideal toggles, but in the opposite order.
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Antichain rowmotion as a product of toggles

Example (RowA)

I7−→ comp7−→ F−1

7−→
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Antichain rowmotion as a product of toggles

Example (RowA)

I7−→ comp7−→ F−1

7−→
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Antichain rowmotion as a product of toggles

Example (RowA)

I7−→ comp7−→ F−1

7−→
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Antichain rowmotion as a product of toggles

Example (RowA)

I7−→ comp7−→ F−1

7−→
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Antichain rowmotion as a product of toggles

Example (RowA)

I7−→ comp7−→ F−1

7−→
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Poset polytopes

Stanley (1986) defined some polytopes associated with posets.

C(P ) is the chain polytope of P , the set of f ∈ [0, 1]P

such that
n∑

i=1

f(xi) ≤ 1 for all chains x1 < x2 < · · · < xn.

OR(P ) is the order-reversing polytope of P , the set of
all order-reversing labelings f ∈ [0, 1]P .

OP (P ) is the order-preserving polytope of P , the set
of all order-preserving labelings f ∈ [0, 1]P .

0.2

0.7 0

0.1 0 0.3

∈ C(P )
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Poset polytopes

Stanley (1986) defined some polytopes associated with posets.

C(P ) is the chain polytope of P , the set of f ∈ [0, 1]P

such that
n∑

i=1

f(xi) ≤ 1 for all chains x1 < x2 < · · · < xn.

OR(P ) is the order-reversing polytope of P , the set of
all order-reversing labelings f ∈ [0, 1]P .

OP (P ) is the order-preserving polytope of P , the set
of all order-preserving labelings f ∈ [0, 1]P .

0.2

0.9 0.2

1 0.9 0.5

∈ OR(P )
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Poset polytopes

Stanley (1986) defined some polytopes associated with posets.

C(P ) is the chain polytope of P , the set of f ∈ [0, 1]P

such that
n∑

i=1

f(xi) ≤ 1 for all chains x1 < x2 < · · · < xn.

OR(P ) is the order-reversing polytope of P , the set of
all order-reversing labelings f ∈ [0, 1]P .

OP (P ) is the order-preserving polytope of P , the set
of all order-preserving labelings f ∈ [0, 1]P .

0.8

0.1 0.8

0 0.1 0.5

∈ OP (P )
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Poset polytopes

We can associate an indicator function to any subset of P .

←→

0

0 1

1 0 0

A(P ), J(P ), F (P ) are precisely the vertices of these polytopes
in which every element of P is labeled with 0 or 1.

A(P ) = C(P ) ∩ {0, 1}P

J(P ) = OR(P ) ∩ {0, 1}P

F (P ) = OP (P ) ∩ {0, 1}P
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Poset polytopes

We can associate an indicator function to any subset of P .

←→

0

0 1

1 0 0

A(P ), J(P ), F (P ) are precisely the vertices of these polytopes
in which every element of P is labeled with 0 or 1.

A(P ) = C(P ) ∩ {0, 1}P

J(P ) = OR(P ) ∩ {0, 1}P

F (P ) = OP (P ) ∩ {0, 1}P
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The poset P̂

The goal now is to extend the definitions of toggles from the
combinatorial sets A(P ), J(P ) to polytopes C(P ), OR(P ).

For any poset P , we will refer to a new poset P̂ by adjoining a
new minimal element m̂ and new maximal element M̂ .

P = P̂ =

M̂

m̂
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The poset P̂

The goal now is to extend the definitions of toggles from the
combinatorial sets A(P ), J(P ) to polytopes C(P ), OR(P ).

For any poset P , we will refer to a new poset P̂ by adjoining a
new minimal element m̂ and new maximal element M̂ .

P = P̂ =

M̂

m̂
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Extending labelings from P to P̂

For f ∈ OR(P ), we extend

to P̂ by setting f (m̂) = 1

and f
(
M̂
)
= 0.

.

0.2

0.9 0.2

1 0.9 0.5

0

1

For f ∈ OP (P ), we extend

to P̂ by setting f (m̂) = 0

and f
(
M̂
)
= 1.

.

0.8

0.1 0.8

0 0.1 0.5

1

0

We need not extend elements of the chain polytope to P̂ .
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Toggles on OR(P )

Definition (Einstein and Propp)

Let e ∈ P . Then we define te : OR(P )→ OR(P ) as follows.
Let L = max

yme
f(y) and R = min

yle
f(y) in P̂ .

(te(f))(x) =

{
f(x) if x 6= e
L+R− f(e) if x = e

0

0.1 0.1

0.5 0.4 0.7

0.5 0.7

0.9

0

1

7−→

0

0.1 0.1

0.5 0.2 0.7

0.5 0.7

0.9

0

1

0.1 + 0.5− 0.4 = 0.2
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Toggles on OR(P )

Definition (Einstein and Propp)

Let e ∈ P . Then we define te : OR(P )→ OR(P ) as follows.
Let L = max

yme
f(y) and R = min

yle
f(y) in P̂ .

(te(f))(x) =

{
f(x) if x 6= e
L+R− f(e) if x = e

0

0.1 0.1

0.5 0.4 0.7

0.5 0.7

0.9

0

1

7−→

0

0.1 0.1

0.5 0.4 0.7

0.5 0.7

0.8

0

1

0.7 + 1− 0.9 = 0.8
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Toggles on the chain polytope C(P )

To define τe : C(P )→ C(P ), given g ∈ C(P ) and e ∈ P , τe(g)
can only differ from g at the value of e.

(τe(g))(e) = 1−max

{
k∑

i=1

g(yi)

∣∣∣∣∣ (y1, . . . , yk) is a chain
in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0
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Toggles on the chain polytope C(P )

To define τe : C(P )→ C(P ), given g ∈ C(P ) and e ∈ P , τe(g)
can only differ from g at the value of e.

(τe(g))(e) = 1−max

{
k∑

i=1

g(yi)

∣∣∣∣∣ (y1, . . . , yk) is a chain
in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0

0.2 + 0 + 0.1 + 0.1 + 0.1 = 0.5
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Toggles on the chain polytope C(P )

To define τe : C(P )→ C(P ), given g ∈ C(P ) and e ∈ P , τe(g)
can only differ from g at the value of e.

(τe(g))(e) = 1−max

{
k∑

i=1

g(yi)

∣∣∣∣∣ (y1, . . . , yk) is a chain
in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0

0.2 + 0 + 0.1 + 0.2 + 0 = 0.5
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Toggles on the chain polytope C(P )

To define τe : C(P )→ C(P ), given g ∈ C(P ) and e ∈ P , τe(g)
can only differ from g at the value of e.

(τe(g))(e) = 1−max

{
k∑

i=1

g(yi)

∣∣∣∣∣ (y1, . . . , yk) is a chain
in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0

0.2 + 0 + 0.1 + 0.2 + 0.1 = 0.6
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Toggles on the chain polytope C(P )

To define τe : C(P )→ C(P ), given g ∈ C(P ) and e ∈ P , τe(g)
can only differ from g at the value of e.

(τe(g))(e) = 1−max

{
k∑

i=1

g(yi)

∣∣∣∣∣ (y1, . . . , yk) is a chain
in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0

0.3 + 0.1 + 0.2 + 0.1 = 0.7



Background
Connection between order ideal toggles and antichain toggles

Piecewise-linear generalization to poset polytopes

Toggles on the chain polytope C(P )

To define τe : C(P )→ C(P ), given g ∈ C(P ) and e ∈ P , τe(g)
can only differ from g at the value of e.

(τe(g))(e) = 1−max

{
k∑

i=1

g(yi)

∣∣∣∣∣ (y1, . . . , yk) is a chain
in P that contains e

}

0.2 0.3

0

0.6
0.4 0.3

0.1 0.2

0.1 0.1 0

0.7 is max and 1− 0.7 = 0.3
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Piecewise-linear toggling vs. combinatorial toggling

Some properties of combinatorial toggles (antichains and
order ideals) need not extend to the piecewise-linear
setting (chain polytope and order polytope).

For a finite poset P , A(P ) and J(P ) are finite sets, so
rowmotion on these must have finite order. On polytopes,
however, the order of rowmotion need not be finite.

However, for certain “nice” posets (like products of two
chains), various properties of combinatorial rowmotion
(surprisingly) extend to piecewise-linear (and furthermore
birational) rowmotion (Einstein-Propp, Grinberg-Roby).

The isomorphism from earlier between TogA(P ) and
TogJ(P ) lifts to a piecewise-linear isomorphism between
TogC(P ) and TogOR(P ).
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however, the order of rowmotion need not be finite.

However, for certain “nice” posets (like products of two
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Background
Connection between order ideal toggles and antichain toggles

Piecewise-linear generalization to poset polytopes
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For a finite poset P , A(P ) and J(P ) are finite sets, so
rowmotion on these must have finite order. On polytopes,
however, the order of rowmotion need not be finite.

However, for certain “nice” posets (like products of two
chains), various properties of combinatorial rowmotion
(surprisingly) extend to piecewise-linear (and furthermore
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TogJ(P ) lifts to a piecewise-linear isomorphism between
TogC(P ) and TogOR(P ).
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Piecewise-linear toggling vs. combinatorial toggling

Some properties of combinatorial toggles (antichains and
order ideals) need not extend to the piecewise-linear
setting (chain polytope and order polytope).

For a finite poset P , A(P ) and J(P ) are finite sets, so
rowmotion on these must have finite order. On polytopes,
however, the order of rowmotion need not be finite.

However, for certain “nice” posets (like products of two
chains), various properties of combinatorial rowmotion
(surprisingly) extend to piecewise-linear (and furthermore
birational) rowmotion (Einstein-Propp, Grinberg-Roby).

The isomorphism from earlier between TogA(P ) and
TogJ(P ) lifts to a piecewise-linear isomorphism between
TogC(P ) and TogOR(P ).
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Bijections between C(P ), OR(P ), and OP (P )

Stanley’s “transfer map” gives a natural extension of

the bijection I : A(P )→ J(P ) to OR : A(P )→ OR(P ),

the bijection F: A(P )→ F (P ) to OP : A(P )→ OP (P ).

0.2

0.7 0

0.1 0 0.3

OR7−→

0.2

0.9 0.2

1 0.9 0.5
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Relation between toggles on C(P ) and OR(P )

Definition

t∗e := τe1τe2 · · · τekτeτe1τe2 · · · τek where {e1, . . . , ek} are
the elements that e covers.

ηe := tx1tx2 · · · txk
where (x1, x2, . . . , xk) is a linear

extension of the subposet {x < e} of P .

τ ∗e := ηeteη
−1
e

are defined as before, but now te : OR(P )→ OR(P ) and
τe : C(P )→ C(P ) are the piecewise-linear toggles.

C(P )

OR(P )

C(P )

OR(P )

OR

te

t∗e

OR

C(P )

OR(P )

C(P )

OR(P )

OR

τ ∗e

τe

OR
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Future research

By “detropicalizing” the operations, generalize toggles on
chain polytopes to birational toggles, similar to what
Einstein, Grinberg, Propp, Roby have done for toggles on
order polytopes.

How can we use the isomorphisms discussed here to
translate homomesy results between antichains and order
ideals, or between the chain and order polytopes?
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